7.4 introduction of Polar Coodinates

new Introduction to Polar Coordinates
[Polar Versus Rectangular Coordinates]
Let's consider a graph with an arbitrary point in the coordinate plane.

Rectangular Coordinates - measures the horizontal \& vertical distances (and direction) from the axes.

Polar Coordinates - measures the distances (and direction) from the origin (radius) \& the circle

Conclusion Rectangular Coordinates deal with horizontal \& vertical distances whereas polar coordinates deal with diagonal \& circular distances.

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Let's consider the intersection of rectangular and polar coordinates. Also, let's recall that in trigonometry $x=\cos \theta$ and $y=\sin \theta$.
From the right triangle:
So, $\cos \theta=\frac{x}{r}$ and $\sin \theta=\frac{y}{r}$
Then, $x=r \cos \theta$ and $y=r \sin \theta$.
Also, $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{y}{r}}{\frac{x}{r}}=\frac{y}{x}$
[Conversion Equations]

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& x^{2}+y^{2}=r^{2} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

(example) Determine the polar coordinate.

$$
\begin{aligned}
& \cdot(1,1) \quad x^{2}+y^{2}=r^{2} \\
& (1)^{2}+(1)^{2}=r^{2} \\
& x=r \cos \theta \\
& 1+1=r^{2} \\
& 1=\sqrt{2} \cos \theta \\
& \frac{1}{\sqrt{2}}=\cos \theta \\
& \sqrt{2}=r \\
& \frac{\sqrt{2}}{2}=\cos \theta \\
& \theta=\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right) \\
& =(r, \theta)=\left(\sqrt{2}, \frac{\pi}{4}\right) \\
& \theta=\frac{\pi}{4}
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
(example) Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar coordinates to cartesian coordinates.

$$
\begin{array}{l|}
\left(2, \frac{\pi}{3}\right)=(r, \theta) \\
x=r \cos \theta \\
=2 \cos \left(\frac{\pi}{3}\right)
\end{array} \begin{aligned}
& \\
& =2\left(\frac{1}{2}\right)
\end{aligned}
$$

[Example] Sketch the curve $r=1+\sin \theta, 0 \leq \theta \leq 2 \pi$.

θ	r
0	$1+\sin 0=1$
$\frac{\pi}{2}$	$1+\sin \frac{\pi}{2}=2$
$\frac{\pi}{3 \pi}$	$1+\sin \pi=1$
$\frac{3 \pi}{2}$	$1+\sin \frac{3 \pi}{2}=0$
2π	$1+\sin 2 \pi=1$

[Tangents to Polar Curves]
Let's consider the polar curve $r=f(\theta)$.
Using $x=r \cos \theta, y=r \cos \theta$ we can create parametric equations:

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
& =f(\theta) \cos \theta & & =f(\theta) \sin \theta
\end{aligned}
$$

Let's now differentiate the parametric equations:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

[Example] For $r=1+\sin \theta$, find the slope of the tangent when $\theta=\frac{\pi}{3}$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}=\frac{(\cos \theta) \sin \theta+(1+\sin \theta) \cos \theta}{(\cos \theta) \cos \theta-(1+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(1+2 \sin \theta)}{1-2 \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(1+2 \sin \theta)}{(1+\sin \theta)(1-2 \sin \theta)} \\
& \left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{3}} \frac{\cos \left(\frac{\pi}{3}\right)\left(1+2 \sin \left(\frac{\pi}{3}\right)\right)}{\left(1+\sin \left(\frac{\pi}{3}\right)\right)\left(1-2 \sin \left(\frac{\pi}{3}\right)\right)}=-1 .
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

