8.1 Area Between Curves

Standards:

MCI 1
MCI

Old Finding Area using Integration
Let's consider the function $f(x)=x^{3}+2$. Find the area between $x=-1$ \& $x=2$

Recall: we can find the area either by approximating with rectangles or computing with integrals.

$$
\begin{aligned}
& \left.\int_{-1}^{2} x^{3}+2 d x=\frac{x^{4}}{4}+2 x\right]_{-1}^{2}=\left[\frac{(2)^{4}}{4}+2(2)\right]-\left[\frac{(-1)^{4}}{4}+2(-1)\right]=[8]-[-1.75] \\
& \quad=9.75 .
\end{aligned}
$$

new Area between curves
Let's consider 2 functions: $f(x) \& g(x)$. We want to find the area between 2 arbitrary curves.

top curve
[Example 1] Find the area under the curves.

$$
\begin{aligned}
(\sqrt{x})^{2} & =\left(x^{2}\right)^{2} \\
x & =x^{4} \\
0 & =x^{4}-x \\
0 & =x\left(x^{3}-1\right) \\
x & =0,1
\end{aligned}
$$

[Example 2] Find the area between the curves $y=0 \& y=\sqrt{x}$ between $x=0$ and

$$
\begin{aligned}
\int_{0}^{2} \sqrt{x} & -0 d x=\int_{0}^{2} x^{1 / 2} d x=\frac{2}{3} x^{3 / 2} \\
& \left.=\frac{2}{3} \sqrt{x^{3}}\right]_{0}^{2}=\left[\frac{2}{3} \sqrt{(2)^{3}}\right]-\left[\frac{2}{3} \sqrt{0^{3}}\right] \\
& =\frac{2 \sqrt{8}}{3}
\end{aligned}
$$

[Example] Find the area between $y=-x \& y=2-x^{2}$.

$$
\left.\int_{-1}^{\}}\left[2-x^{2}\right]-[-x] d x=\int_{-1}^{\}} 2-x^{2}+x d x=2 x-\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{-1}^{2}
$$

$$
=\left[2(2)-\frac{(2)^{3}}{3}+\frac{(2)^{2}}{2}\right]-\left[2(-1)-\frac{(-1)^{3}}{3}+\frac{(-1)^{2}}{2}\right]
$$

$$
=\left[4-\frac{8}{3}+\frac{4}{2}\right]-\left[-2+\frac{1}{3}-\frac{1}{2}\right]
$$

$$
=4+2-\frac{8}{3}-\frac{1}{3}+\frac{4}{2}-\frac{1}{2}
$$

$$
=6-\frac{9}{3}+2-\frac{1}{2}
$$

$$
=6-3+2-\frac{1}{2}
$$

$$
=5-\frac{1}{2}=4.5
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
[Examples] Find the area of curves bounded by $y=\sqrt{x}, y=0$ and $y=x-2$.

Area $A+$ Area B

$$
\begin{aligned}
& \text { Area } A=\int_{0}^{2}[\sqrt{x}]-[0] d x \\
& \text { Area } B=\int_{2}^{4}[\sqrt{x}]-[x-2] d x
\end{aligned}
$$

$$
\begin{array}{ll}
x-2=0 & (\sqrt{x})^{2}=(x-2)^{2} \\
x=2 & x=(x-2)^{2} \\
x=x^{2}-4 x+4 \\
0 & =x^{2}-5 x+4 \\
0 & =(x-4)(x-1) \\
0 & =x=4, \not x
\end{array}
$$

Now let's consider the 2 equations: $x=f(y)$ and $x=g(y)$.

$$
\begin{aligned}
& \int_{a}^{b} f(y) d y-\int_{a}^{b} g(y) d y= \\
& =\int_{a}^{b} f(y)-g(y) d y \\
& \text { the most the most }
\end{aligned}
$$

Area between 2 the 2 curves formula in respect to y
the most the most
right carte left curve
[Example] Find the area between curves.

$$
\begin{aligned}
& \int_{0}^{1}\left[12 y^{2}-12 y^{3}\right]-\left[2 y^{2}-2 y\right] d u \\
= & \int_{0}^{1} 1 y^{2}-12 y^{3}-2 y^{2}+2 y d y \\
= & \frac{12 y^{3}}{3}-\frac{12 y^{4}}{4}-\frac{2 y^{3}}{3}+\frac{2 y^{2}}{2} \\
= & \left.4 y^{3}-3 y^{4}-\frac{2}{3} y^{3}+y^{2}\right]_{0} \\
= & {\left[4(1)^{3}-3(1)^{4}-\frac{2}{3}(1)^{3}+(1)^{2}\right]-[0] } \\
= & 4-3-\frac{2}{3}+1 \\
= & 2-\frac{2}{3}=\frac{6}{3}-\frac{2}{3}=\frac{4}{3}
\end{aligned}
$$

