8.2 Logarithmic Functions
old -A Solving Equations
(1)

$$
\begin{aligned}
-7 x-3 x+2 & =-8 x-8 \\
-10 x+2 & =-8 x-8 \\
-2 x+2 & =-8 \\
-2 x & =-10 \\
x & =5
\end{aligned}
$$

(3)

$$
\begin{aligned}
x^{2} & =9 \\
\sqrt{x^{2}} & =\sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

OId-B Inverse Functions
Let's recall: the relationship between 2 inverse functions

graphically reflection across $y=x$ line (passes hovitomtal line test)	numerically - x\&y interchange	algebraically $f\left(f^{-1}(x)\right)=x$.

(Example) Find the inverse function.

$$
\begin{aligned}
& f(x)=2 x-3 \\
& y=2 x-3 \\
& x=2 y-3 \\
& x+3=2 y \\
& \frac{x+3}{2}=y \\
& f^{-1}(x)=\frac{x+3}{2}
\end{aligned}
$$

new Logarithmic Functions
Let's consider some exponential functions. Find x.
(1)

$$
\begin{aligned}
& 2^{x}=8 \\
& x=3
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 3^{x}=9 \\
& x=2
\end{aligned}
$$

(3)

$$
\begin{aligned}
5^{x} & =120 \quad \text { Dilemma: } \\
x & =? \quad \text { How do we solve }
\end{aligned}
$$ exponential functions?

Let's consider $y=a^{x}$. Graph the arbitary function.

Now graph the arbitrary inverse function by reflecting across $y=x$ line.

The model for this new inverse equation is

$$
\log _{a} y=x
$$

LOGARITHMIC FUNCTIONS
The inverse of an exponential function is a log function.

$$
a^{x}=y \Longleftrightarrow \log _{a} y=x
$$

We need to convert exponential equations into log equations to solve exponential functions.

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
"All you need is BOB" to help you convert back and forth from exponentials to $\log \&$ vice versa.

Base

$$
a^{x}=y \Leftrightarrow \log _{a} y=x
$$

Opposite
Back
[Examples] Rewrite into the inverse form.
(1)

$$
\begin{aligned}
& 3^{y}=5 \\
& \log _{3} 5=y
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 5^{x}=125 \\
& \log _{5} 125=x
\end{aligned}
$$

(3)

$$
\begin{aligned}
& z^{0}=e \\
& \log _{z} e=0 .
\end{aligned}
$$

(4) $\log _{10} y=3$
(5)

$$
10^{3}=y
$$

$$
\begin{aligned}
& \log _{2} x=4 \\
& 2^{4}=x
\end{aligned}
$$

(b)

$$
\log _{z} 0=e
$$

$$
z^{e}=0
$$

Let's figure out some facts!
$a^{\prime}=a: \log _{a} a=1, a^{\log a}=1 \Longrightarrow$ Makes sense because they are inverses! (Right?)
[Examples] Rewrite into the inverse form. 2 ways to do now! either know the conversion or take the log of the expmeminds
(1) $3^{y}=5$
method 1: Know conversion base.

$$
\log _{3} 5=y
$$

method 2: take \log a both sides

$$
\begin{aligned}
3^{y} & =5 \\
\log _{3} 3 y & =\log _{3} 5 \\
y & =\log _{3} 5
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
[Examples] Solving expmentials \& logarithmic eqtus.
(1)

$$
\begin{gathered}
2^{x}=8 \\
\log _{2} 8=x \\
3=x
\end{gathered}
$$

(2)

$$
\begin{array}{r}
5^{x}=25 \\
\log _{5} 25=x \\
2=x
\end{array}
$$

What about $5^{x}=120^{?}$. $\quad \log _{5} 120=x \quad \begin{aligned} & \text { we still need a way to } \\ & \text { com put logs! }\end{aligned}$

Let's consider $\log y=x$. When \log functions does n't seem to have a base, the base is 10 !

$$
\begin{aligned}
& \log _{a} y=x \\
& x=\frac{\log _{9} y}{\log a}
\end{aligned}
$$

* insert value in calculator.

$$
\begin{aligned}
& 5^{x}=120 \\
& \log _{5} 120=x \\
& x=\frac{\log 120}{\log 5} \approx 2.97
\end{aligned}
$$

