8.3 Triangle Congruence

Standards:
 G.CD. 6
 G.CO. 7
 G.C0. 8

OLd Isometric Transformations
Let's recall the isometric transformations:
(2) Translations
(2) Reflections (Slide) (flip)
(3) Rotations (turn)
(1) $(x, y) \rightarrow(x-2, y)$
(2) $(x, y) \rightarrow(x,-y)$

- Preimage to the image is the same shape \& same size.

Isometric transformations (rigid motion) is where the distances between the points are preserved. Bascially, the image is congruent to its preimage.
hew Triangle Congruence
Let's consider the following 2 triangles:

$$
\triangle A B C \cong \triangle D E F
$$

\leftarrow note: order of the statement matters

- Congruent Triangles must have 3 congruent sides \& 3 congruent angles
- The parts of congruent triangles that "match" are culled corresponding parts.
- In a congruent statement, ORDER MATTERS! Everything must match up.

Sides
Angles

$$
\begin{array}{ll}
\overline{A B} \cong \overline{D E} & <A \cong<D \\
\overline{B C} \cong \overline{E F} & <B \cong<E \\
\overline{A C} \cong \overline{D F} & <C \cong<F
\end{array}
$$

[Examples] Complete each congruence statement.
(1)

$$
\begin{aligned}
& \text { If } \triangle A B C \cong \triangle D E F, \\
& \text { then } B C \cong E F
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \triangle A B C \cong \triangle D E F \text {, } \\
& \text { then } \angle C \cong \angle F
\end{aligned}
$$

(3) $\triangle C A T \cong \triangle D D G$
(4)

$$
\text { then } \overline{A C} \cong \overline{D D}
$$

$$
\begin{aligned}
& \triangle B A T \cong \triangle M O N \text { (5) } \triangle B C A \cong \triangle E G F \\
& \angle T \cong<N \triangle C A B \cong \triangle G F E \\
& \frac{\angle A T B}{} \cong<O N M \\
& \overline{B A} \cong M D \\
& \overline{M M} \cong
\end{aligned}
$$

(b)

$$
\triangle M K L \cong \Delta J K N
$$

(7)

$\triangle A B D \cong \triangle C B D$
How do we prove 2 triangles are congruent (meaning 3 corresponding congruent sides \& corresponding congruent angles).
To prove triangle congruence, you will need to check for congruency in 3 specific components.

There are 5 ways to prove triangles congruent.

1. Side-Side-Side
(SSs)

2. Side - Angle- Side

3. Angle-Side-Angle

(ASA)

4. Angle-Angle-Side (AAS)

5. Hypotenuse-Leg
(HL)

All three sides in one triangle are congruent to the corresponding three sides in the other triangle.
Two sides \& the INCLUDED angle in one triangle are congruent to the cores podding two sides \& INCCIDED side in other triangle (the angle is in between the 2 marked sides)

Two angles \& the INCLUDED sides in one triangle are congruent to the cores ponding two angles INCLDED side in other thangle (the angle is in between the 2 marked sides)
Two angles and one side that is No included in one triangle is congruent to the corresponding two angles and one side NoT included in the other triangle.

Must be right triangles where the hypotenuse \& one leg in one triangle is congruent to the hypotenuse \& one ley in the other triangle.

5 Ways to Prove Triangles are Congment:

$$
\begin{aligned}
& \text { SSS } \\
& \text { LAS } \\
& \text { ASA } \\
& \text { IAS } \\
& H C
\end{aligned}
$$

These are NoT ways to prove Triangle Congruence:

$$
\begin{aligned}
& \text { ASS } \\
& \text { SSA } \\
& \text { AAA }
\end{aligned}
$$

note: 2 markings you can add if they notated already

Share a side

Reason: Reflexive Property

$$
\begin{aligned}
\triangle A B C & \cong A D C \\
\overline{A C} & \cong \overline{A C}
\end{aligned}
$$

Vertical Angles

Reason: Vertical Angles are congruent.

$$
<J K N \cong L K M
$$

