8.3 Volumes of Solids of Revolution Disk Method

Standards:
MCI
MElIc
\qquad
\qquad
\qquad

Old Area between curves
Let's consider $f(x)=x^{2}-4 x+10 \& g(x)=4 x-x^{2}$. Find the area of region between $x=1 \& x=3$.

$$
\begin{aligned}
& \int_{1}^{3}\left[x^{4}-4 x+10\right]-\left[4 x-x^{2}\right] d x \\
= & \int_{2}^{3} x^{2}-4 x+10-4 x+x^{2} d x \\
= & \int_{1}^{3} 2 x^{2}-8 x+10 d x \\
= & \left.\frac{2 x^{3}}{3}-\frac{8 x^{2}}{2}+10 x=\frac{2}{3} x^{3}-4 x^{2}+10 x\right]_{1}^{3}= \\
= & {\left[\frac{2}{3}(3)^{3}-4(3)^{2}+10(3)\right]-\left[\frac{2}{3}(1)^{3}-4(1)^{2}+10(1)\right]=}
\end{aligned}
$$

$=\frac{16}{3}$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
$2^{\text {nd }}$ Practice problem: $f(x)=\sqrt{x}, 0 \leq x \leq 2$, find the area.

$$
\begin{aligned}
& \int_{0}^{2}\left[\sqrt{x^{3}}\right]-[0] d x \\
& =\int_{0}^{2} x^{1 / 2} d x \\
& \left.=\frac{x^{3 / 2}}{3 / 2}=\frac{2}{3} x^{3 / 2}\right]_{0}^{2} \\
& =\left[\frac{2}{3}(2)^{3 / 2}\right]-\left[\frac{2}{3}(0)^{2 / 3]}\right] \\
& =\frac{2}{3} \sqrt{2^{3}}-\frac{2}{3} \sqrt{0^{3}} \\
& =\frac{2 \sqrt{8}}{3} \approx 1.89
\end{aligned}
$$

new Volumes of Solids of Revolution (Disk Method)
Now, let's consider the previous example where now we will find the. volume.

SD MODEL

Intine amount of

$$
\begin{aligned}
& \quad \int_{0}^{2} \pi(\sqrt{x})^{2} d x=\int_{0}^{2} \pi x d x \\
& \left.=\pi \int_{0}^{2} x d x=\pi \frac{x^{2}}{2}\right]_{0}^{2} \\
& =\pi\left[\frac{\left(v^{2}\right.}{2}\right]-\left[\frac{(0)^{2}}{2}\right]^{2}
\end{aligned}
$$

Area of Circle

$$
=\pi r^{2}
$$

$$
=\pi(\sqrt{x})^{2}
$$

Volume of Circle
$=$ Area * $d x$
$=\pi(\sqrt{x})^{2} d x$

So let's generalize! Let's consider a curve $y=f(x)$ \& find the volume revolving around x-axis.

"Take the sum of ALL OF THE DISKS"

$$
\text { Volume }=\int_{a}^{b} \pi(f(x))^{2} d x
$$

- Formula whew revolving around x-axis
[Exampl e1] Find the volume of the solid by revolving anund x-axis of $y=x^{2}$, $y=0$ and $x=2$.

$$
\begin{aligned}
V & =\int_{n}^{1} \pi r^{2} d x=\int_{0}^{2} \pi\left(x^{2}\right)^{2} d x \\
& =\int_{0}^{2} \pi x^{4} d x=\pi \int_{0}^{2} x^{4} d x \\
& \left.=\pi \frac{x^{5}}{5}\right]_{0}^{2} \\
& =\pi\left[\frac{(2)^{5}}{5}\right]-\left[\frac{(0)^{5}}{5}\right] \\
& =\frac{32}{5} \pi
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

