8.6 Introduction to Similarity

Standards:

G.SRT. 1
G.SRT.1a
G.SRT. 16
G.SRT. 2

Old Isometric Transformations

$\frac{\text { 1. Translation }}{\text { "slide" }}$	
2. Reflection $(x, y) \rightarrow(x \pm h, y \pm k)$ "flip" of or up or $(x, y) \rightarrow(x,-y)$ across x-axis $(x, y) \rightarrow(-x, y)$ across y-axis	

3. Rotation

- Preimage to the image is the same shape \& same size.

Isometric transformations (rigid motion) is where the distances between the points are preserved. Bascially, the image is congruent to its preimage. new Dilatims

- Dilation is a non-isometric transformation that produces an image that is the same shape as the preimage but different in size.
- A dilation stretches or shrinks the preimage by the scale factor.
notation preimage $\sim \sim$ image

$$
(x, y) \longrightarrow\left(k x, k_{y}\right)
$$

(note The "k's" are the scale factors

[Examples]
(1) $(x, y) \rightarrow(2 x, 2 y)$
(2) $(x, y) \rightarrow(3 x, 3 y)$

Conclusion When " k " is greater than 1, then the image will stretch (expand) or get bigger.
[Examples]
(1) $(x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right)$
(2) $(x, y) \rightarrow\left(\frac{1}{2} x, \frac{1}{2} y\right)$

Conclusion) when " k " is between 0 and 1, the image will string or get smaller.

Let's consider the previous example. Is there a relationship between each preimage \&image?

$$
\begin{aligned}
& \frac{\text { Sides of Preinage }}{\text { Sides of Image }}=\frac{F E}{F^{\prime} E^{\prime}}=\frac{F G}{F^{\prime} G^{\prime}}=\frac{G H}{G^{\prime} H^{\prime}}=\frac{E H}{E^{\prime} H^{\prime}} \\
&=\frac{2}{4}=\frac{2}{4}=\frac{2}{4}=\frac{2}{4} \\
&=\frac{1}{2}=\frac{1}{2}=\frac{1}{2}=\frac{2}{2}
\end{aligned}
$$

conclusion:
There is a pporational (or ratio) relationship with similar figwes.

