8.7 Similar Triangles, Part 1 Proving Similar Triangles

Standards:
\qquad
G.SRT. 2

Old Parallel Lines cut with Transversal
Find the missing angles.

$$
\begin{aligned}
\text { Given } & >1=47^{\circ} \\
>7 & =53^{\circ} .
\end{aligned}
$$

$$
\begin{aligned}
& >1=47^{\circ}(\text { given }) \\
& >2: 53 \rightarrow \text { supplementary (linear pairto }<1) \\
& \left.>3=53^{\circ} \rightarrow \text { congruent (alternate to }<6\right) \\
& \left.>4=47^{\circ} \rightarrow \text { supplementary (linearpairto }>3\right) \\
& >5: 47 \rightarrow \text { congruent (altomate to }<6) \\
& >6=53^{\circ} \text { (given) }
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.
more old... Dilation \& Scale Factors
Let's consider a rectangle EFGH. Produce the image form $(x, y) \rightarrow\left(\frac{1}{2} x, \frac{1}{2} y\right)$.

Recall: Similar Triangles have proportimal relationships.

$$
\begin{aligned}
\frac{\text { Sides of Preinage }}{\text { Sides of Image }} & =\frac{F E}{F^{\prime} E^{\prime}}=\frac{F G}{F^{\prime} G^{\prime}}=\frac{G H}{G^{\prime} H^{\prime}}=\frac{E H}{E^{\prime} H^{\prime}} \\
& =\frac{2}{4}=\frac{2}{4}=\frac{2}{4}=\frac{2}{4} \\
& =\frac{1}{2}=\frac{1}{2}=\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

new Similar Triangles (Par tl)
Let's consider 2 triangles of different sites. Compare the 2 triangles.

Are the 2 triangles congruent? no, because corresponding sides are not not equal.
Do they have the same shape? yes, because both are right triangles.

$$
\begin{aligned}
& \triangle A B C \sim \triangle D E F \\
& \frac{\overline{A B}}{\overline{D E}}=\frac{\overline{B C}}{\overline{E F}}=\frac{\overline{A C}}{\overline{D F}} \\
& \frac{5}{10}=\frac{4}{8}=\frac{3}{6} \\
& \frac{1}{2}=\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

- $\triangle A B C \& \triangle E F C$ are similar become the shape is the same \& the corresponding sides have the same ratio

Similar Triangles

- Two triangles aresimilar if they have the same 3 angle measurements.
- Similar triangles have same shape but possibly different sizes.

Think about \rightarrow Simar Triangles as being a magnification of the other.
\Rightarrow To prove 2 triangles are similar, you must show that sides are proportional \& angles are congruent.

There are three ways to prove similarity:

1. Side - Side - Side
(SSS)

Measures of all corresponding sides of the 2 triangles are proportional.

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

Measures of the 2 sides of one triangle is proportional to the corresponding 2 sides of the other triangle \& the the Corresponding INCLUDED angles are congruent.

$$
\frac{A B}{D E}=\frac{B C}{} \text { and } \angle B=\angle E \text {. }
$$

Measure of the dangles in one triangle must be congruent to the corresponding 2 angles in the other triangle.

$$
\begin{aligned}
& \angle A=\angle D \\
& \angle B=\angle E
\end{aligned}
$$

[Examples] Determine whether the triangles are similar. Explain your answer by either using similarity test or showing why it's not similar.
(1)

Yes because

$$
\begin{aligned}
& \angle A=\angle D, \angle B=\angle E . \\
& \text { So, } \triangle A B C \sim D D E F \\
& \text { because of } A A .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x z}{v w}=\frac{y z}{w u} \\
& \frac{3}{7} \neq \frac{5}{11}
\end{aligned}
$$

No. $\Delta W V u$ + $\Delta x y z$ because the sides are not proportional.
[Examples] Find the unknown of the following simi lar triangles.
(1)

$$
\frac{\mathbb{R}}{R P}=\frac{K J}{P Q}
$$

$$
\begin{aligned}
\frac{28}{42} & =\frac{x}{33} \\
42 x & =924 \\
x & =22
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{U V}{L K}=\frac{U T}{L M} \quad \frac{60}{130} & =\frac{x}{117} \\
130 x & =7020 \\
x & =54
\end{aligned}
$$

