8.8 Similar Triangles, Part 2

Midsegment of Triangles, Proportions of Triangles, Base Angle Theorem

Standards:
G.SRT. 4
G.CO. 10

DId Similar Triangles
Let's recall characteristics of Similar Triangles:

- same shape, but possibly different size
- corresponding sides are proportional
- proving similar triangles by AA,SSS,SAS.

Let's consider the diagram below. Prove $\triangle R S T \sim \triangle P S Q$.

- Are sides proportional?

$$
\frac{S P}{S R}=\frac{S Q}{S T} \quad \frac{4}{16}=\frac{5}{20} \quad \frac{1}{4}=\frac{1}{4}
$$

yes!

- Included angle congruent? yes $<S \cong<S$ (Reflexive Property)

So,SAS. Therefore, $\triangle R S T \sim \triangle P S Q$.
use could split triangles apart:

note: ">" means parallel.

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.
new-A Triangle Midsegment Theorem

The midsegment is:

1. Parallel to one side of the triangle
2. Is half of the length of the paraliel side
3. 2 midpoints connecting.

EQUATION
Midsegment $=\frac{1}{2}$ Parallel side
[Examples] Find the unknown.

$$
\begin{aligned}
\text { midseg } & =\frac{1}{2} P S \\
12 & =\frac{1}{2} P s \\
24 & =P s
\end{aligned}
$$

$$
\text { midseg }=\frac{1}{2} P S
$$

$$
\text { midseg }=\frac{1}{2} P S
$$

$$
\text { midseg }=\frac{1}{2}(8)
$$

$$
3 x=\frac{1}{2}(84)
$$

$$
\text { midseg }=4
$$

$$
3 x=42
$$

$$
x=14
$$

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.

midseg $=\frac{1}{2}$ Ps

$$
4=\frac{1}{2}(5 x-2)
$$

$$
4=\frac{5 x}{2}-1
$$

$$
5=\frac{5 x}{2}
$$

$$
10=5 x
$$

$$
2=x
$$

$$
\begin{aligned}
& \frac{6}{10}=\frac{9}{9+y} \\
& 9(10)=6(9+y) \\
& 90=54+6 y \\
& 36=6 y \\
& 6=y
\end{aligned}
$$

(5)

$$
\begin{array}{ll}
\text { midseg }=\frac{1}{2} \text { PS } & 11=\frac{1}{2} P S \\
x=\frac{1}{2}(24) & 22=75 \\
x=12 & z=\frac{22}{2}=11 \\
y+56=180^{\circ} & \\
y=125^{\circ} &
\end{array}
$$

$$
\begin{gathered}
\frac{4}{6}=\frac{x+4}{18} \\
6(x+4)=72 \\
6 x+24=72 \\
6 x=48 \\
x=8
\end{gathered}
$$

Base Angles (Isosceles Triangle)
Opposite of the congruent angles are congruent sides

/

$$
B^{6}
$$

$$
\bullet_{0}
$$

[Examples] Solve for the untinun.

(2)

(3)

$$
\begin{gathered}
67+67+?=180 \\
134+?=180 \\
?=46 \\
7 x-3=46 \\
7 x=49 \\
x=7 .
\end{gathered}
$$

$$
\begin{array}{r}
11 x-6=71 \\
11 x=77 \\
x=7
\end{array}
$$

\qquad
\qquad
\qquad

