2.9 Trigonometric Ratios

Finding missing sides \& missing angles using Right Triangle Trigonometry.
Standards:
$\frac{\text { G.SRT. } 6}{\text { G.SRT } 7}$
G.SRT. 8

Old Pythagorean Theorem
Recall: If there is a right triangle, then there is a relationship between the legs \& hypotenuse which is $a^{2}+b^{2}=c^{2}$.

$$
a^{2}+b^{2}=c^{2}
$$

[Examples] Find the missing side.
(1)

(2)

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(3)^{2}+(4)^{2}=e^{2} \\
9+\left(6=e^{2}\right. \\
25=e^{2} \\
\sqrt{25}=\sqrt{e^{2}} \\
5=e
\end{gathered}
$$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
(6)^{2}+f^{2} & =10^{2} \\
36+f^{2} & =100 \\
f^{2} & =64 \\
\sqrt{f^{k}} & =\sqrt{64} \\
f & =8
\end{aligned}
$$

new Trigonometric Ratios
Let's consider the below right triangle. Solve for the unknown.

We can't use Pythagorean Theorem because we have to use 2 legs to find the hypotenuse.

Dilemma:- How do we find the unknown sides when only given one side in a right triangle?

- The way we can find unknown sides in a right is by using Trigonometric Ratios.
- The Trigonometric Functions we will be looking at are:
$\rightarrow \frac{\text { Sine }}{\longrightarrow \text { pronounced "sign" }} \frac{\text { cosine }}{4 \text { pronounced "cosign" }} \frac{\text { tangent }}{\longrightarrow \text { pronounced "tan-gent" }}$
\rightarrow symbol $\sin \theta \longrightarrow$ symbol $\cos \theta \longrightarrow \tan \theta$
- Greek letter $\theta \rightarrow$ pronounced "theta" representing an unknown angle. (like x represents an unknown number)

TRig RATIOS inemorize

"opposite" means opposite side of θ

- "adjacent "means next to \forall
- "hypotenuse" means longest or diagonal side.

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

A good way to memorize is SOH-CAH-TOA! an indian word:
[Examples] Find $\sin \theta, \cos \theta \& \tan \theta$ from the right triangles.
(1)

$$
\sin \theta=\frac{\text { opp }}{h y p}=\frac{35}{37}
$$

$$
\cos \theta=\frac{a d j}{h y p}=\frac{12}{37}
$$

$$
\tan \theta=\frac{o p p}{a d j}=\frac{35}{37}
$$

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.
(2)

$$
\begin{aligned}
& \sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{8.2}{24.5} \\
& \cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{23.1}{24.5} \\
& \tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{8.2}{23.1}
\end{aligned}
$$

(3) Consider $\triangle A B C$ where $m \angle B A C=90^{\circ}$ and $\sin \theta=\frac{3}{5}$ Find $\overline{A B}$ and $\tan \theta$?

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
3^{2}+b^{2} & =5^{2} \\
9+b^{2} & =25 \\
b^{2} & =16 \\
\sqrt{b^{2}} & =\sqrt{16} \\
b & =4 .
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.

How do we use trig ratios to solve for missing sides?
Let's go back to the our dilemma.

- What's the angle of interest? 60°
- What's the position of side length x in respect to 60° ? "opposite"
- What is the position of side length 60° in respect to 60° ? "hypotenuse"

Which trig ratio is appropriate to use? $\sin \theta$.

$$
\begin{gathered}
\sin \theta=\frac{\text { opp }}{\text { hyp }} \Rightarrow \sin 60^{\circ}=\frac{x}{10} \quad \begin{array}{l}
\text { Solve for } x \text { by cross } \\
\text { multiplication. }
\end{array} \\
\\
\\
\\
\\
x=10 \sin 60^{\circ} \\
\end{gathered}
$$

[More Examples] Find the missing side.
(1)

$$
\tan \theta=\frac{\text { opp }}{\text { adj }} \Rightarrow \tan 32^{\circ}=\frac{x}{13}
$$

$$
13 \tan 32^{\circ}=x
$$

$$
8.12 \approx x
$$

(2)

$$
\begin{aligned}
\cos \theta=\frac{a d_{j}}{\text { hyp }} \Rightarrow \cos 60^{\circ} & =\frac{x}{11} \\
11 \cos 60^{\circ} & =x \\
\frac{11}{2} & =x \\
5.5 & =x
\end{aligned}
$$

(3)

$$
\begin{array}{r}
\sin \theta=\frac{\text { opp }}{\text { adj }} \Rightarrow \sin 57^{\circ}=\frac{10.8}{x} \\
\\
\frac{x \sin 57^{\circ}}{\sin 57}=\frac{10.8}{\sin 57} \\
\\
x \approx 12.88
\end{array}
$$

(4)

$$
\begin{array}{r}
\cos \theta=\frac{\operatorname{ddj}}{\text { hyp }} \Rightarrow \quad \cos 37^{\circ}=\frac{11}{x} \\
\\
\quad \frac{x \cos 37^{\circ}}{\cos 37^{\circ}}=\frac{11}{\cos 37^{\circ}} \\
x
\end{array}
$$

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.

Let's consider a triangle with 2 giver sides \& a missing angle:

$$
\begin{aligned}
& \sin \theta=\frac{\text { opp }}{a d_{j}} \Rightarrow \\
& \sin \theta=\frac{8.66}{10}
\end{aligned}
$$

Now, I'm trying to find θ. \Rightarrow we need to isolate α by using

$$
\sin ^{-1}\left(\frac{8.66}{10}\right)=\theta
$$ INVERSE OPERATIONS.

- The inverse of $\sin \theta$ is

$$
59.99^{\circ} \approx \theta
$$

$$
60^{\circ} \approx \theta
$$ $\sin ^{-1}\left(\frac{o p p}{h y p}\right)$.

- The inverse of $\cos \theta$ is $\cos ^{-1}\left(\frac{a d j}{\text { hyp }}\right)$.
-The inverse of $\tan \alpha$ is $\tan ^{-1}\left(\frac{\text { opp }}{N(\sqrt{4})}\right.$
[More Examples] Find the missing angle.
(1)

$$
\begin{aligned}
& \cos \theta=\frac{a d j}{\text { hyp }} \Rightarrow \cos \theta=\frac{12}{13} \\
& \cos ^{-1}\left(\frac{12}{13}\right)=\theta \\
& 22.61^{\circ} \approx \theta \\
& 23^{\circ} \approx \theta
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \tan \theta=\frac{\text { opp }}{\text { adj }} \Rightarrow \tan \theta=\frac{11.9}{10} \\
& \tan ^{-1}\left(\frac{11.9}{10}\right)=\theta \\
& 49.95^{\circ} \approx \theta \\
& 50^{\circ} \approx \theta
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \cos \theta=\frac{a d_{1}}{h y p} \Rightarrow \cos \theta=\frac{6}{9} \\
& \cos ^{-1}\left(\frac{6}{9}\right)=\theta \\
& 48.2^{\circ} \simeq \theta
\end{aligned}
$$

