	Notecards Application of Derivatives		
1	What are local minimums or maximum? What are local extrema?	When a function changes direction.	
	What are local extrema:	Local Maximum Local Minimum	
2	What are absolute minimums or maximums? What are absolute extrema?	The absolute largest/smallest y —value on graph. These can happen when a graph changes directions They can also happen at endpoints.	
		Absolute Maximum	
3	How do you find critical numbers?	Minimum	
		You find the derivative of a function and set it equal to zero and solve for x . If the derivative is a fraction you set the top and bottom equal to zero and solve for x .	
4	Rolle's Theorem		
		Assume that $f(x)$ is continuous and differentiable on the entire interval from $[a,b]$. If $f(a)=f(b)$ Then there exists a number c between a and b such that $f'(c)=0$. What does this mean????? If two x —values have the same y —value then there is a max/min somewhere inbetween.	
5	Mean Value Theorem	Assume that $f(x)$ is continuous and differentiable on the entire interval from $[a,b]$.	
		Then somewhere the instantaneous rate of change is equal to the average rate of change. $f'(c) = \frac{f(b) - f(a)}{b - a}$ Set these equal to each other and solve for x .	
6	How does the sign of the derivative relate to the original function?	If $f'(x) > 0$ Then $f(x)$ is increasing. If $f'(x) < 0$ Then $f(x)$ is decreasing.	

7	How does the sign of the second derivative relate to the original function?	If $f''(x) > 0$ Then $f(x)$ is concave up. If $f''(x) < 0$ Then $f(x)$ is concave down.
8	What is the First Derivative Test?	If $f'(x)=0$ and If $f'(x)$ changes from positive to negative Then $x=maximum$ If $f'(x)=0$ and If $f'(x)$ changes from negative to positive Then $x=minimum$
9	How do you find points of inflection?	If $f''(x) = 0$ and if $f''(x)$ changes signs at that x —value Then that x —is a point of inflection
10	What is the Second Derivative Test?	If $f'(x) = 0$ and If $f''(x) < 0$ Then $x = maximum$ If $f'(x) = 0$ and If $f''(x) > 0$ Then $x = minimum$