Formulas and Theorems for Reference

I. Trigonometric Formulas

$$1. \qquad \sin^2\theta + \cos^2\theta = 1$$

$$2. 1 + \tan^2 \theta = \sec^2 \theta$$

$$3. \qquad 1 + \cot^2 \theta = \csc^2 \theta$$

4.
$$\sin(-\theta) = -\sin\theta$$

5.
$$\cos(-\theta) = \cos \theta$$

6.
$$\tan(-\theta) = -\tan\theta$$

7.
$$\sin(A+B) = \sin A \cos B + \sin B \cos A$$

8.
$$\sin(A - B) = \sin A \cos B - \sin B \cos A$$

9.
$$cos(A + B) = cos A cos B - sin A sin B$$

10.
$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

11.
$$\sin 2\theta = 2\sin \theta \cos \theta$$

12.
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$

13.
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\cot \theta}$$

14.
$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$$

15.
$$\sec \theta = \frac{1}{\cos \theta}$$

16.
$$\csc \theta = \frac{1}{\sin \theta}$$

17.
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

18.
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

II. Differentiation Formulas

$$1. \qquad \frac{d}{dx}(x^n) = nx^{n-1}$$

$$2. \qquad \frac{d}{dx}(fg) = fg' + gf'$$

$$3. \qquad \frac{d}{dx}\left(\frac{f}{g}\right) = \frac{gf' - fg'}{g^2}$$

4.
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

$$5. \qquad \frac{d}{dx}(\sin x) = \cos x$$

$$6. \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$7. \qquad \frac{d}{dx}(\tan x) = \sec^2 x$$

$$8. \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

9.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

10.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$11. \quad \frac{d}{dx}(e^x) = e^x$$

$$12. \quad \frac{d}{dx}(a^x) = a^x \ln a$$

13.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

14.
$$\frac{d}{dx}(\operatorname{Arcsin} x) = \frac{1}{\sqrt{1-x^2}}$$

15.
$$\frac{d}{dx}(Arctan x) = \frac{1}{1+x^2}$$

III. Integration Formulas

$$1. \qquad \int a \ dx = ax + C$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$3. \qquad \int \frac{1}{x} \, dx = \ln|x| + C$$

$$4. \qquad \int e^x \ dx = e^x + C$$

$$5. \qquad \int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$6. \qquad \int \ln x \, dx = x \ln x - x + C$$

$$7. \qquad \int \sin x \ dx = -\cos x + C$$

$$8. \qquad \int \cos x \ dx = \sin x + C$$

9.
$$\int \tan x \ dx = \ln|\sec x| + C \text{ or } -\ln|\cos x| + C$$

$$10. \qquad \int \cot x \ dx = \ln|\sin x| + C$$

11.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

12.
$$\int \csc x \, dx = \ln|\csc x - \cot x| + C$$

$$13. \qquad \int \sec^2 x \ dx = \tan x + C$$

14.
$$\int \sec x \tan x \, dx = \sec x + C$$

$$15. \qquad \int \csc^2 x \ dx = -\cot x + C$$

$$16. \qquad \int \csc x \cot x \ dx = -\csc x + C$$

$$17. \qquad \int \tan^2 x \ dx = \tan x - x + C$$

18.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{Arctan}\left(\frac{x}{a}\right) + C$$

19.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = Arcsin\left(\frac{x}{a}\right) + C$$

IV. Formulas and Theorems

1. Limits and Continuity

A function y = f(x) is continuous at x = a if:

- i) f(a) is defined (exists)
- ii) $\lim_{x\to a} f(x)$ exists, and

iii)
$$\lim_{x \to a} f(x) = f(a)$$

Otherwise, f is discontinuous at x = a.

The limit $\lim_{x\to a} f(x)$ exists if and only if both corresponding one-sided limits exist and are equal — that is,

$$\lim_{x \to a} f(x) = L \Longleftrightarrow \lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$$

2. Intermediate - Value Theorem

A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b).

Note: If f is continuous on [a, b] and f(a) and f(b) differ in sign, then the equation f(x) = 0 has at least one solution in the open interval (a, b).

3. Limits of Rational Functions as $x \to \pm \infty$

1. $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0$ if the degree of f(x) < the degree of g(x)

Example:
$$\lim_{x \to \infty} \frac{x^2 - 2x}{x^3 + 3} = 0$$

2. $\lim_{x\to\pm\infty} \frac{f(x)}{g(x)}$ is infinite if the degree of f(x) > the degree of g(x)

Example:
$$\lim_{x \to +\infty} \frac{x^3 + 2x}{x^2 - 8} = \infty$$

3. $\lim_{x\to\pm\infty} \frac{f(x)}{g(x)}$ is finite if the degree of f(x) = the degree of g(x)

Note: The limit will be the ratio of the leading coefficient of f(x) to g(x).

Example:
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 2}{10x - 5x^2} = -\frac{2}{5}$$

Formulas and Theorems

4. Horizontal and Vertical Asymptotes

- 1. A line y = b is a horizontal asymptote of the graph of y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = \overline{b}$.
- 2. A line x = a is a vertical asymptote of the graph of y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} = \pm \infty$.

5. Average and Instantaneous Rate of Change

1. Average Rate of Change: If (x_0, y_0) and (x_1, y_1) are points on the graph of y = f(x), then the average rate of change of y with respect to x over the interval $[x_0, x_1]$ is

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{y_1 - y_0}{x_1 - x_0} = \frac{\Delta y}{\Delta x}.$$

2. Instantaneous Rate of Change: If (x_0, y_0) is a point on the graph of y = f(x), then the instantaneous rate of change of y with respect to x at x_0 is $f'(x_0)$.

6.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 or $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

The latter definition of the derivative is the instantaneous rate of change of f(x) with respect to x at x = a.

Geometrically, the derivative of a function at a point is the slope of the tangent line to the graph of the function at that point.

7. The Number e as a limit

$$1. \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

2.
$$\lim_{n\to 0} (1+n)^{\frac{1}{n}} = e$$

8. Rolle's Theorem

If f is continuous on [a, b] and differentiable on (a, b) such that f(a) = f(b), then there is at least one number c in the open interval (a, b) such that f'(c) = 0.

9. Mean Value Theorem

If f is continuous on [a,b] and differentiable on (a,b), then there is at least one number c in (a,b) such that $\frac{f(b)-f(a)}{b-a}=f'(c)$.

10. Extreme-Value Theorem

If f is continuous on a closed interval [a, b], then f(x) has both a maximim and a minimum on [a, b].

- 11. To find the maximum and minimum values of a function y = f(x), locate
 - 1. the points where f'(x) is zero or where f'(x) fails to exist
 - 2. the end points, if any, on the domain of f(x).

Note: These are the only candidates for the value of x where f(x) may have a maximum or a minimum.

- 12. Let f be differentiable for a < x < b and continuous for $a \le x \le b$.
 - 1. If f'(x) > 0 for every x in (a, b), then f is increasing on [a, b].
 - 2. If f'(x) < 0 for every x in (a, b), then f is decreasing on [a, b].
- 13. Suppose that f''(x) exists on the interval (a, b).
 - 1. If f''(x) > 0 in (a, b), then f is concave upward in (a, b).
 - 2. If f''(x) < 0 in (a, b), then f is concave downward in (a, b).

To locate the points of inflection of y = f(x), find the points where f''(x) = 0 or where f''(x) fails to exist. These are the only candidates where f(x) may have a point of inflection. Then test these points to make sure that f''(x) < 0 on one side and f''(x) > 0 on the other.

14. If a function is differentiable at a point x = a, it is continuous at that point. The converse is false, i.e. continuity does not imply differentiability.

15. Linear Approximation

The linear approximation to f(x) near $x = x_0$ is given by $y = f(x_0) + f'(x_0)(x - x_0)$ for x sufficiently close to x_0 .

To estimate the slope of a graph at a point — just draw a tangent line to the graph at that point. Another way is (by using a graphics calculator) to "zoom in" around the point in question until the graph "looks" straight. This method almost always works. If we "zoom in" and the graph looks straight at a point, say x = a, then the function is <u>locally linear</u> at that point.

The graph of y = |x| has a sharp corner at x = 0. This corner cannot be smoothed out by "zooming in" repeatedly. Consequently, the derivative of |x| does not exist at x = 0, hence, is not locally linear at x = 0.

16. Comparing Rates of Change

The exponential function $y = e^x$ grows very rapidly as $x \to \infty$ while the logarithmic function $y = \ln x$ grows very slowly as $x \to \infty$.

Exponential functions like $y = 2^x$ or $y = e^x$ grow more rapidly as $x \to \infty$ than polynomial or rational functions, and faster than any power of x, even $x^{100,000}$

Logarithmic functions like $y = \log_2 x$ or $y = \ln x$ grow more slowly as $x \to \infty$ than any positive power of x. The function $y = \ln x$ grows slower as $x \to \infty$ than any nonconstant polynomial.

We say, that as $x \to \infty$:

1. f(x) grows faster than g(x) if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$ or if $\lim_{x\to\infty} \frac{g(x)}{f(x)} = 0$.

If f(x) grows faster than g(x) as $x \to \infty$, then g(x) grows slower than f(x) as $x \to \infty$.

2. f(x) and g(x) grow at the <u>same</u> rate as $x \to \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \neq 0$ (L is finite and nonzero).

For example,

- 1. e^x grows faster than x^3 as $x \to \infty$ since $\lim_{x \to \infty} \frac{e^x}{x^3} = \infty$
- 2. x^4 grows faster than $\ln x$ as $x \to \infty$ since $\lim_{x \to \infty} \frac{x^4}{\ln x} = \infty$
- 3. $x^2 + 2x$ grows at the same rate as x^2 as $x \to \infty$ since $\lim_{x \to \infty} \frac{x^2 + 2x}{x^2} = 1$

To find some of these limits as $x \to \infty$, you may use the graphing calculator. Make sure that an appropriate viewing window is used.

17. Inverse Functions

- 1. If f and g are two functions such that f(g(x)) = x for every x in the domain of g, and, g(f(x)) = x, for every x in the domain of f, then, f and g are inverse functions of each other.
- 2. A function f has an inverse function if and only if no horizontal line intersects its graph more than once.
- 3. If f is either increasing or decreasing in an interval, then f has an inverse function over that interval.
- 4. If f is differentiable at every point on an interval I, and $f'(x) \neq 0$ on I, then $g = f^{-1}(x)$ is differentiable at every point of the interior of the interval f(I) and $g'(f(x)) = \frac{1}{f'(x)}$.

18. Properties of $y = e^x$

1. The exponential function $y = e^x$ is the inverse function of $y = \ln x$.

2. The domain is the set of all real numbers, $-\infty < x < \infty$.

3. The range is the set of all positive numbers, y > 0.

$$4. \ \frac{d}{dx}\left(e^x\right) = e^x.$$

5.
$$e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$$
.

6. $y = e^x$ is continuous, increasing, and concave up for all x.

7.
$$\lim_{x \to +\infty} e^x = +\infty$$
 and $\lim_{x \to -\infty} e^x = 0$.

8.
$$e^{\ln x} = x$$
, for $x > 0$; $\ln (e^x) = x$ for all x .

19. Properties of $y = \ln x$

1. The domain of $y = \ln x$ is the set of all positive numbers, x > 0.

2. The range of $y = \ln x$ is the set of all real numbers, $-\infty < y < \infty$.

3. $y = \ln x$ is continuous and increasing everywhere on its domain.

$$4. \ln(ab) = \ln a + \ln b.$$

5.
$$\ln(a/b) = \ln a - \ln b$$
.

6.
$$\ln a^r = r \ln a$$
.

7.
$$y = \ln x < 0$$
 if $0 < x < 1$.

8.
$$\lim_{x \to +\infty} \ln x = +\infty$$
 and $\lim_{x \to 0^+} \ln x = -\infty$.

9.
$$\log_a x = \frac{\ln x}{\ln a}$$
.

20. Trapezoidal Rule

If a function f is continuous on the closed interval [a,b] where [a,b] has been partitioned into n subintervals $[x_0,x_1], [x_1,x_2], \ldots, [x_{n-1},x_n]$, each of length (b-a)/n, then $\int_a^b f(x) \ dx \approx \frac{b-a}{2n} [f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)].$

21. Properties of the Definite Integral

Let f(x) and g(x) be continuous on [a, b].

1.
$$\int_a^b c \cdot f(x) dx = c \int_a^b f(x) dx$$
 for any constant c

$$2. \int_a^a f(x) \ dx = 0$$

3.
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

4.
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$
, where f is continuous on an interval containing the numbers a, b , and c

5. If
$$f(x)$$
 is an odd function, then $\int_{-a}^{a} f(x) dx = 0$

6. If
$$f(x)$$
 is an even function, then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

7. If
$$f(x) \ge 0$$
 on $[a, b]$, then $\int_a^b f(x) dx \ge 0$

8. If
$$g(x) \ge f(x)$$
 on $[a, b]$, then $\int_a^b g(x) \ dx \ge \int_a^b f(x) \ dx$

22a. Definition of Definite Integral as the Limit of a Sum

Suppose that a function f(x) is continuous on the closed interval [a,b]. Divide the interval into n equal subintervals, of length $\Delta x = \frac{b-a}{n}$. Choose one number in each subinterval i.e. x_1 in the first, x_2 in the second, ..., x_k in the kth, ..., and x_n in the

nth. Then
$$\lim_{n\to\infty}\sum_{k=1}^n f(x_k)\Delta x = \int_a^b f(x)\ dx = F(b) - F(a)$$
.

22b. Fundamental Theorem of Calculus:

$$\int_a^b f(x) \ dx = F(b) - F(a), \text{ where } F'(x) = f(x), \text{ or } \frac{d}{dx} \int_a^x f(x) \ dx = f(x).$$

23. Velocity, Speed, and Acceleration

- 1. The <u>velocity</u> of an object tells how fast it is going <u>and</u> in which direction. Velocity is an instantaneous rate of change.
- 2. The speed of an object is the absolute value of the velocity, |v(t)|. It tells how fast it is going disregarding its direction.

The speed of a particle <u>increases</u> (speeds up) when the velocity and acceleration have the same signs. The speed <u>decreases</u> (slows down) when the velocity and acceleration have opposite signs.

3. The <u>acceleration</u> is the instantaneous rate of change of velocity — it is the derivative of the velocity — that is, a(t) = v'(t). Negative acceleration (deceleration) means that the velocity is decreasing. The acceleration gives the rate at which the velocity is changing.

Therefore, if x is the displacement of a moving object and t is time, then:

i) velocity =
$$v(t) = x'(t) = \frac{dx}{dt}$$

ii) acceleration =
$$a(t) = x''(t) = v'(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

iii)
$$v(t) = \int a(t) dt$$

iv)
$$x(t) = \int v(t) dt$$

Note: The <u>average</u> velocity of a particle over the time interval from t_0 to another time t, is Average Velocity = $\frac{\text{Change in position}}{\text{Length of time}} = \frac{s(t) - s(t_0)}{t - t_0}$, where s(t) is the position of the particle at time t.

- 24. The average value of f(x) on [a,b] is $\frac{1}{b-a} \int_a^b f(x) dx$.
- 25. If f and g are continuous functions such that $f(x) \ge g(x)$ on [a, b], then the area between the curves is $\int_a^b [f(x) g(x)] dx$.

26. Volumes of Solids of Revolution

Let f be nonnegative and continuous on [a, b], and let R be the region bounded above by y = f(x), below by the x-axis, and the sides by the lines x = a and x = b.

- 1. When this region R is revolved about the x-axis, it generates a solid (having circular cross sections) whose volume $V = \int_a^b \pi [f(x)]^2 dx$.
- 2. When R is revolved about the y-axis, it generates a solid whose volume $V=\int_a^b 2\pi x f(x) \ dx$.

27. Volumes of Solids with Known Cross Sections

- 1. For cross sections of area A(x), taken perpendicular to the x-axis, volume = $\int_a^b A(x) dx$.
- 2. For cross sections of area A(y), taken perpendicular to the y-axis, volume $=\int_{c}^{d}A(y)\ dy$.