Quadratic Formula $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Pythagorean Identities $\sin ^{2} x+\cos ^{2} x=1 \quad 1+\tan ^{2} x=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x$

Angle sum and difference formulas

$$
\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y
$$

$$
\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y
$$

$$
\sin 2 x=2 \sin x \cos x
$$

Double angle formulas

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x
$$

$$
\cos 2 x=2 \cos ^{2} x-1
$$

$$
\cos 2 x=1-2 \sin ^{2} x
$$

Alternate versions of the half-angle formulas $\cos ^{2} x=\frac{1+\cos 2 x}{2} \quad \sin ^{2} x=\frac{1-\cos 2 x}{2}$
$\sin (-x)=-\sin x \quad \tan (-x)=-\tan x \quad \sec (-x)=\sec x$
$\cos (-x)=\cos x$
$\cot (-x)=-\cot x$
$\csc (-x)=-\csc x$
$\underline{\text { Slope-intercept form } \quad y=m x+b \quad \text { point-slope form } \quad y-y_{1}=m\left(x-x_{1}\right), ~(x) ~}$
Vertical line $\quad x=a$
horizontal line $y=b$
Absolute value of a number \mathbf{x} is the number $|x|=\sqrt{x^{2}}=x$ if $x \geq 0$ and $x<0$.
Graphing trigonometric functions $\quad f(x)=a \sin b(x-c)+d$
$|a|=$ amplitude $\quad \frac{2 \pi}{b}=$ period
$|c|=$ horizontal shift $\quad|d|=$ vertical shift
Definition of the derivative $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
position velocity acceleration
down-take a derivative
up-take an integral

Things I Should Know In Calculus Class

Continuity Test

The function $y=f(x)$ is continuous at $x=C$ if and only if all of the following are true:

1) $f(c)$ exists $(c$ is in the domain of f)
2) $\lim _{x \rightarrow c} f(x)$ exists
3) $\lim _{x \rightarrow c} f(x)=f(c)$

Chain Rule $\quad \frac{d}{d x}\left(u^{n}\right)=n\left(u^{n-1}\right) d u$
Product Rule $f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$
(First times the derivative of the second) plus (the second times the derivative of the first)
Quotient Rule $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
(Bottom times the derivative of the top) minus (the top times the derivative of the bottom) over the bottom squared

Limit Rules $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1 \quad \lim _{h \rightarrow 0} \frac{1-\cos (h)}{h}=0 \quad \lim _{x \rightarrow \infty} \frac{1}{x}=0$
Derivatives $\left\{\begin{array}{l}\sin u=\cos u d u \\ \cos u=-\sin u d u \\ \tan u=\sec ^{2} u d u\end{array}\right.$
$\left\{\begin{array}{l}\sec u d u=\sec u \tan u d u \\ \csc u d u=-\csc u \cot u d u \\ \cot u d u=-\csc ^{2} u d u\end{array}\right.$
$f\left(f^{-1}(x)\right)=x \quad f^{-1}(f(x))=x$
Horizontal line test-if passes, the function has an inverse.
An inverse is determined by interchanging x and y in the function and then solving the equation for y.
First Derivative Test

1. \mathbf{f} increases on I if $f^{\prime}(x)>0$ for all x in I
2. \mathbf{f} decreases on I if $f^{\prime}(x)<0$ for all x in I

Second Derivative Test

1. Concave up on I when $f^{\prime \prime}(x)>0$
2. Concave down on I when $f^{\prime \prime}(x)<0$
3. Inflection point when $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ fails to exist

Things I Should Know In Calculus Class

Symmetry

1. y-axis $f(-x)=f(x)$
2. x-axis $f(-x)=-f(x)$
3. origin $f(-x,-y)=f(x, y)$ origin symmetry contains \mathbf{x} and \mathbf{y} symmetry
x-intercepts are zeros of the function
The graph of an odd function is symmetric with respect to the origin.
The graph of an even function is symmetric with respect to the \mathbf{y}-axis.
Asymptotes
Horizontal $\lim _{x \rightarrow \infty} f(x)$ or
4. higher exponent in numerator-no horizontal asymptote
5. higher exponent in denominator- $y=0$
6. exponents are equal in numerator and denominator-ratio of the coefficients

Vertical-zeros of the denominator
Oblique (slant)—higher exponent must be in the numerator-divide the denominator into the numeratorthe quotient is the asymptote

Candidates for maximum and/or minimum (one of the following is true)

1. $f^{\prime}(x)=0$
2. $f^{\prime}(x)$ does not exist
3. endpoints (if any) of the domain of f
$\underline{\text { L'Hopital's Rule for indeterminate forms }} \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$, if this occurs then $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

Exponential Growth and Decay

$$
A=C e^{k t} \quad \frac{d y}{d x}=k y
$$

Logistics

$$
y=\frac{A}{1+B e^{-A k t}}
$$

Translations
$f(x-h)$ shifts $f(x) \mathbf{h}$ units to the right
$f(x+h)$ shifts $f(x)$ h units to the left
$f(x)+k$ shifts k units upward
$f(x)-k$ shifts k units downward
A closed interval [,] contains the endpoints, an open interval (,) does not.

Things I Should Know In Calculus Class

Properties of the natural logarithm $\quad y=\ln x$
Domain: all positive reals
Range: All Reals
Continuous
Always concave down
One-to-one (inverse is $y=e^{x}$)
$\ln 1=0$
$\ln e=1$
$\frac{d}{d x} \ln u=\frac{1}{u} d u$

$$
\ln (a b)=\ln a+\ln b
$$

Laws of logarithms: $\ln \frac{a}{b}=\ln a-\ln b$

$$
\ln a^{n}=n \ln a
$$

Properties of the exponential function $y=e^{x}$
Domain: all Reals
Range: $y>0$

Continuous

Always increasing
One-to-one (inverse is $y=\ln x$)
$e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
$\ln e^{n}=n \ln e=n$
$y=e^{x} \Leftrightarrow x=\ln y$
$\ln e^{x}=x$
$e^{\ln x}=x$
$\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$
$\left(e^{x}\right)\left(e^{x}\right)=e^{2 x}$
$e^{-x}=\frac{1}{e^{x}}$
$a^{x}=e^{x \ln a} \quad(a \neq 1, a>0)$
$\frac{d}{d x} a^{x}=a^{x} \ln a \quad \frac{d}{d x} a^{u}=a^{u} \ln a \frac{d u}{d x}$

Things I Should Know In Calculus Class

Volume Formulas
Cone $\frac{1}{3} \pi r^{2} h \quad$ Cylinder $\pi r^{2} h \quad$ rectangular box $l w h$
Sphere $\frac{4}{3} \pi r^{3}$

Surface Area Formulas

Sphere $4 \pi r^{2} \quad$ cylinder with closed top $2 \pi r^{2}+2 \pi r h$
Cylinder with open top $\pi r^{2}+2 \pi r h$
Box with a top area of four sides + area of top and bottom
Table of Trigonometric Values

Radians	Sine	Cosine
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	$\mathbf{1}$	$\mathbf{0}$
$\frac{\pi}{3 \pi}$	$\mathbf{0}$	$\mathbf{- 1}$
2	$\mathbf{- 1}$	$\mathbf{0}$

