AP Calculus Unit 2 Study Guide

1. Know the difference between average rate of change (secant lines) \& instantaneous rate of change (tangent lines).
2. Be able to find the slopes at 2 points $m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
3. Be able to find the slopes at 1 point $m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
4. Be able to write the equation of the secant line andor equation of the tangent line using slope -intercept form $y=m x+b$ and point-slope form $y-y_{1}=m\left(x-x_{1}\right)$.
5. Be able to find the derivative of a function using the limit definition $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
6. Know the reason why the derivative function is important. Remember the process of the finding the derivative is differentiation.
7. Know how to determine whether a function is differentiable.
8. Know the difference between differentiability, continuity \& limits existing.
9. Know and understand the concept behind continuity whereas using the 3 requirements of being continuous to prove or disprove continuity. Also be able to evaluate continuity graphically \& algebraically. (Go back \& look at 1.4)
10. Be able to estimate the slopes of tangent lines using numerical evidence (tables)
11. Know how to find the equation of the normal curve of the tangent line. $m=a$
12. Be able find slopes between 2 points \& at 1 point by using a data table (Warm up 2's)

Know how to do the following in the calculator:
13. graph a function (or multiple functions in the calculator).
14. produce a table of values from a function
15. estimate the slopes of tangent lines

AINT FOR Be able to find tangent slops of complicated funciens by using TEST) a calculator where as intuiting the function \& numerically analyzing the small intervals of secant slopes to get the tangent line by produaing a table.

$$
\begin{aligned}
& \text { (ie.) } f(x)=\sqrt{x} \text { tangent line by prod } \\
& \lim _{h \rightarrow 0} \frac{\sqrt{h+h}-\sqrt{1}}{h} \rightarrow \begin{array}{c}
\text { evaluate slope } \\
\text { algebraically. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=e^{x} \text { at } x=1 \\
& \lim _{x \rightarrow 0} \frac{e^{1+h}-e^{1}}{h} \rightarrow \begin{array}{l}
\text { too complicated to evaluate } \\
\text { algebraic, so calculator must } \\
\text { be used to estimate slope numerically. }
\end{array}
\end{aligned}
$$

